
Observer

version 0.9

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 Observer User’s Guide 1

1.1 Trace Tool Builder . 1

1.1.1 Introduction . 1

1.1.2 Getting Started . 1

1.1.3 Running the Trace Tool Builder against a remote node 4

1.1.4 Trace Information and the .ti File . 5

1.1.5 Wrap Logs . 5

1.1.6 Formatting . 6

1.1.7 Automatically collect and format logs from all nodes 10

1.1.8 History and Configuration Files . 10

1.1.9 Sequential Tracing . 13

1.1.10 Example: Multipurpose trace tool . 14

1.2 Erlang Top . 14

1.2.1 Introduction . 14

1.2.2 Output . 15

1.2.3 Start . 16

1.2.4 Configuration . 16

1.2.5 Print to file . 19

1.2.6 Stop . 19

2 OBSERVER Reference Manual 21

2.1 observer . 23

2.2 etop . 24

2.3 ttb . 26

List of Figures 33

iiiObserver

iv Observer

Chapter 1

Observer User’s Guide

The OBSERVER application contains tools for tracing and investigation of distributed systems.

1.1 Trace Tool Builder

1.1.1 Introduction

The Trace Tool Builder is a base for building trace tools for single node or distributed erlang systems. It
requires the runtime tools application to be available on the traced node.

The main features of the Trace Tool Builder are:

� Start tracing to file ports on several nodes with one function call.

� Write additional information to a trace information file, which is read during formatting.

� Restoring of previous configuration by maintaining a history buffer and handling configuration
files.

� Some simple support for sequential tracing.

� Formatting of binary trace logs and merging of logs from multiple nodes.

Even though the intention of the Trace Tool Builder is to serve as a base for tailor made trace tools, it is
of course possible to use it directly from the erlang shell. The application only allows the use of file port
tracer, so if you would like would like to use other types of trace clients you will be better off using dbg
directly instead.

1.1.2 Getting Started

The ttb module is the interface to all functions in the Trace Tool Builder. To get started the least you
need to do is to start a tracer with ttb:tracer/0/1/2, and set the required trace flags on the processes
you want to trace with ttb:p/2. Then, when the tracing is completed, you must stop the tracer with
ttb:stop/0/1 and format the trace log with ttb:format/1/2.

ttb:tracer/0/1/2 opens a file trace port on each node that shall be traced. All trace messages will be
written to this port and end up in a binary file (the binary trace log).

ttb:p/2 specifies which processes that shall be traced. Trace flags given in this call specifies what to
trace on each process. You can call this function several times if you like different trace flags to be set on
different processes.

1Observer

Chapter 1: Observer User’s Guide

If you want to trace function calls (i.e. if you have the call trace flag set on any of your processes), you
must also set trace patterns on the required function(s) with ttb:tp or ttb:tpl. A function is only
traced if it has a trace pattern. The trace pattern specifies how to trace the function by using match
specifications. Match specifications are described in the User’s Guide for the erlang runtime system
erts.

ttb:stop/0/1 stops tracing on all nodes, deletes all trace patterns and flushes the trace port buffer.

ttb:format/1/2 translates the binary trace logs into something readable. By default ttb presents each
trace message as a line of text, but you can also write your own handler to make more complex
interpretations of the trace information. A trace log can even be presented graphically via the Event
Tracer application. Note that if you give the format option to ttb:stop/1 the formatting is
automatically done when stopping ttb.

Example: Tracing the local node from the erlang shell

This small module is used in the example:

-module(m).
-export([f/0]).
f() ->

receive
From when pid(From) ->

Now = erlang:now(),
From ! {self(),Now}

end.

The following example shows the basic use of ttb from the erlang shell. Default options are used both
for starting the tracer and for formatting. This gives a trace log named Node-ttb, where Node is the
name of the node. The default handler prints the formatted trace messages in the shell.

(tiger@durin)47> %% First I spawn a process running my test function
(tiger@durin)47> Pid = spawn(m,f,[]).
<0.125.0>
(tiger@durin)48>
(tiger@durin)48> %% Then I start a tracer...
(tiger@durin)48> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)49>
(tiger@durin)49> %% and activate the new process for tracing
(tiger@durin)49> %% function calls and sent messages.
(tiger@durin)49> ttb:p(Pid,[call,send]).
{ok,[{<0.125.0>,[{matched,tiger@durin,1}]}]}
(tiger@durin)50>
(tiger@durin)50> %% Here I set a trace pattern on erlang:now/0
(tiger@durin)50> %% The trace pattern is a simple match spec
(tiger@durin)50> %% generated by dbg:fun2ms/1. It indicates that
(tiger@durin)50> %% the return value shall be traced.
(tiger@durin)50> MS = dbg:fun2ms(fun(_) -> return_trace() end).
[{’_’,[],[{return_trace}]}]
(tiger@durin)51> ttb:tp(erlang,now,MS).
{ok,[{matched,tiger@durin,1},{saved,1}]}
(tiger@durin)52>

2 Observer

1.1: Trace Tool Builder

(tiger@durin)52> %% I run my test (i.e. send a message to
(tiger@durin)52> %% my new process)
(tiger@durin)52> Pid ! self().
<0.72.0>
(tiger@durin)53>
(tiger@durin)53> %% And then I have to stop ttb in order to flush
(tiger@durin)53> %% the trace port buffer
(tiger@durin)53> ttb:stop().
stopped
(tiger@durin)54>
(tiger@durin)54> %% Finally I format my trace log
(tiger@durin)54> ttb:format("tiger@durin-ttb").
({<0.125.0>,{m,f,0},tiger@durin}) call erlang:now()
({<0.125.0>,{m,f,0},tiger@durin}) returned from erlang:now/0 ->
{1031,133451,667611}
({<0.125.0>,{m,f,0},tiger@durin}) <0.72.0> !
{<0.125.0>,{1031,133451,667611}}
ok

Example: Build your own tool

This small example shows a simple tool for “debug tracing”, i.e. tracing of function calls with return
values.

-module(mydebug).
-export([start/0,trc/1,stop/0,format/1]).
-export([print/4]).

%% Include ms_transform.hrl so that I can use dbg:fun2ms/2 to
%% generate match specifications.
-include_lib("stdlib/include/ms_transform.hrl").

%%% -------------Tool API-------------
%%% ----------------------------------
%%% Star the "mydebug" tool
start() ->

%% The options specify that the binary log shall be named
%% <Node>-debug_log and that the print/4 function in this
%% module shall be used as format handler
ttb:tracer(all,[{file,"debug_log"},{handler,{{?MODULE,print},0}}]),
%% All processes (existing and new) shall trace function calls
%% and include a timestamp in each trace message
ttb:p(all,[call,timestamp]).

%%% Set trace pattern on function(s)
trc(M) when atom(M) ->

trc({M,’_’,’_’});
trc({M,F}) when atom(M), atom(F) ->

trc({M,F,’_’});
trc({M,F,_A}=MFA) when atom(M), atom(F) ->

%% This match spec specifies that return values shall
%% be traced. NOTE that ms_transform.hrl must be included

3Observer

Chapter 1: Observer User’s Guide

%% if dbg:fun2ms/1 shall be used!
MatchSpec = dbg:fun2ms(fun(_) -> return_trace() end),
ttb:tpl(MFA,MatchSpec).

%%% Format a binary trace log
format(File) ->

ttb:format(File).

%%% Stop the "mydebug" tool
stop() ->

ttb:stop().

%%% --------Internal functions--------
%%% ----------------------------------
%%% Format handler
print(_Out,end_of_trace,_TI,N) ->

N;
print(Out,Trace,_TI,N) ->

do_print(Out,Trace,N),
N+1.

do_print(Out,{trace_ts,P,call,{M,F,A},Ts},N) ->
io:format(Out,

"~w: ~w, ~w:~n"
"Call : ~w:~w/~w~n"
"Arguments :~p~n~n",
[N,Ts,P,M,F,length(A),A]);

do_print(Out,{trace_ts,P,return_from,{M,F,A},R,Ts},N) ->
io:format(Out,

"~w: ~w, ~w:~n"
"Return from : ~w:~w/~w~n"
"Return value :~p~n~n",
[N,Ts,P,M,F,A,R]).

To distinguish trace logs produced with this tool from other logs, the file option is used in tracer/2.
The logs will therefore be named Node-debug log, where Node is the name of the node where the log is
produced.

By using the handler option when starting the tracer, the information about how to format the file is
stored in the trace information file (.ti). This is not necessary, as it might be given at the time of
formatting instead. It can however be useful if you e.g. want to automatically format your trace logs by
using the format option in ttb:stop/1. It also means that you don’t need any knowledge of the
content of a binary log to be able to format it the way it was intended. If the handler option is given
both when starting the tracer and when formatting, the one given when formatting is used.

The call trace flag is set on all processes. This means that any function activated with the trc/1
command will be traced on all existing and new processes.

1.1.3 Running the Trace Tool Builder against a remote node

The Observer application might not always be available on the node that shall be traced (in the
following called the “traced node”). It is still possible to run the Trace Tool Builder from another node
(in the following called the “trace control node”) as long as

4 Observer

1.1: Trace Tool Builder

� The Observer application is available on the trace control node.

� The Runtime Tools application is available on both the trace control node and the traced node.

If the Trace Tool Builder shall be used against a remote node, it is highly recommended to start the trace
control node as hidden. This way it can connect to the traced node without the traced node “seeing” it,
i.e. if the nodes() BIF is called on the traced node, the trace control node will not show. To start a
hidden node, add the -hidden option to the erl command, e.g.

% erl -sname trace_control -hidden

Diskless node

If the traced node is diskless, ttb must be started from a trace control node with disk access, and the
file option must be given to the tracer/2 function with the value flocal, Fileg, e.g.

(trace_control@durin)1> ttb:tracer(mynode@diskless,[{file,{local,
{wrap,"mytrace"}}}]).
{ok,[mynode@diskless]}

1.1.4 Trace Information and the .ti File

In addition to the trace log file(s), a file with the extension .ti is created when the Trace Tool Builder is
started. This is the trace information file. It is a binary file, and it contains the process information, trace
flags used, the name of the node to which it belongs and all information written with the
write trace info/2 function.

To be able to use all this information during formatting, it is important that the trace information file
exists in the same directory as the trace log, and that it has the same name as the trace log with the
additional extension .ti.

Except for the process information, everything in the trace information file is passed on to the handler
function when formatting. The TI parameter is a list of fKey,ValueListg tuples. The keys flags,
handler, file and node are used for information written directly by ttb.

You can add information to the trace information file by calling write trace info/2. Note that
ValueList always will be a list, and if you call write trace info/2 several times with the same Key,
the ValueList will be extended with a new value each time. Example:

ttb:write trace info(mykey,1) gives the entry fmykey,[1]g in TI. Another call,
ttb:write trace info(mykey,2), changes this entry to fmykey,[1,2]g.

1.1.5 Wrap Logs

If you want to limit the size of the trace logs, you can use wrap logs. This works almost like a ciclular
buffer. You can specify the maximum number of binary logs and the maximum size of each log. ttb
will create a new binary log each time a log reaches the maximum size. When the the maximum
number of logs are reached, the oldest log is deleted before a new one is created.

Wrap logs can be formatted one by one or all at once. See Formatting [page 6].

5Observer

Chapter 1: Observer User’s Guide

1.1.6 Formatting

Formatting can be done automatically when stopping ttb (see Automatically collect and format logs
from all nodes [page 10]), or explicitly by calling the ttb:format/1/2 function.

Formatting means to read a binary log and present it in a readable format. You can use the default
format handler in ttb to present each trace message as a line of text, or write your own handler to make
more complex interpretations of the trace information. You can even use the Event Tracer et to present
the trace log graphically (see Presenting trace logs with Event Tracer [page 7]).

The first argument to ttb:format/1/2 specifies which binary log(s) to format. This can be the name of
one binary log, a list of such logs or the name of a directory containing one or more binary logs. If this
argument indicates more than one log, and the timestamp flag was set when tracing, the trace messages
from the different logs will be merged according to the timestamps in each message.

The second argument to ttb:format/2 is a list of options. The out option specifies the destination
where the formatted text shall be written. Default destination is standard io, but a filename can also
be given. The handler option specifies the format handler to use. If this option is not given, the
handler option given when starting the tracer is used. If the handler option was not given when
starting the tracer either, a default handler is used, which prints each trace message as a line of text.

A format handler is a fun taking four arguments. This fun will be called for each trace message in the
binary log(s). A simple example which only prints each trace message could be like this:

fun(Fd, Trace, _TraceInfo, State) ->
io:format(Fd, "Trace: ~p~n", [Trace]),
State

end.

Fd is the file descriptor for the destination file, or the atom standard io. TraceInfo contains
information from the trace information file (see Trace Information and the .ti File [page 5]). State is a
state variable for the format handler fun. The initial value of the State variable is given with the
handler option, e.g.

ttb:format("tiger@durin-ttb", [{handler, {{Mod,Fun}, initial_state}}])
^^^^^^^^^^^^^

Another format handler could be used to calculate time spent by the garbage collector:

fun(_Fd,{trace_ts,P,gc_start,_Info,StartTs},_TraceInfo,State) ->
[{P,StartTs}|State];

(Fd,{trace_ts,P,gc_end,_Info,EndTs},_TraceInfo,State) ->
{value,{P,StartTs}} = lists:keysearch(P,1,State),
Time = diff(StartTs,EndTs),
io:format("GC in process ~w: ~w milliseconds~n", [P,Time]),
State -- [{P,StartTs}]

end

A more refined version of this format handler is the function handle gc/4 in the module
multitrace.erl which can be found in the src directory of the Observer application.

By giving the format handler et, you can have the trace log presented graphically with et viewer in the
Event Tracer application (see Presenting trace logs with Event Tracer [page 7]).

Wrap logs can be formatted one by one or all in one go. To format one of the wrap logs in a set, give the
exact name of the file. To format the whole set of wrap logs, give the name with ’*’ instead of the wrap
count. An example:

Start tracing:

6 Observer

1.1: Trace Tool Builder

(tiger@durin)1> ttb:tracer(node(),[{file,{wrap,"trace"}}]).
{ok,[tiger@durin]}
(tiger@durin)2> ttb:p(...)
...

This will give a set of binary logs, like:

tiger@durin-trace.0.wrp
tiger@durin-trace.1.wrp
tiger@durin-trace.2.wrp
...

Format the whole set of logs:

1> ttb:format("tiger@durin-trace.*.wrp").
....
ok
2>

Format only the first log:

1> ttb:format("tiger@durin-trace.0.wrp").
....
ok
2>

To merge all wrap logs from two nodes:

1> ttb:format(["tiger@durin-trace.*.wrp","lion@durin-trace.*.wrp"]).
....
ok
2>

Presenting trace logs with Event Tracer

For detailed information about the Event Tracer, please turn to the User’s Guide and Reference Manuals
for the et application.

By giving the format handler et, you can have the trace log presented graphically with et viewer in the
Event Tracer application. ttb provides a few different filters which can be selected from the Filter
menu in the et viewer window. The filters are names according to the type of actors they present (i.e.
what each vertical line in the sequence diagram represent). Interaction between actors is shown as red
arrows between two vertical lines, and activities within an actor are shown as blue text to the right of
the actors line.

The processes filter is the only filter which will show all trace messages from a trace log. Each vertical
line in the sequence diagram represents a process. Erlang messages, spawn and link/unlink are typical
interactions between processes. Function calls, scheduling and garbage collection are typical activities
within a process. processes is the default filter.

The rest of the filters will only show function calls and function returns. All other trace message are
discarded. To get the most out of these filters, et viewer needs to known the caller of each function and
the time of return. This can be obtained by using both the call and return to flags when tracing. Note
that the return to flag only works with local call trace, i.e. when trace patterns are set with ttb:tpl.

7Observer

Chapter 1: Observer User’s Guide

The same result can be obtaind by using the call flag only and setting a match specification like this on
local or global function calls:

1> dbg:fun2ms(fun(_) -> return_trace(),message(caller()) end).
[{’_’,[],[{return_trace},{message,{caller}}]}]

This should however be done with care, since the freturn traceg function in the match specification
will destroy tail recursiveness.

The modules filter shows each module as a vertical line in the sequence diagram. External function
calls/returns are shown as interactions between modules and internal function calls/returns are shown as
activities within a module.

The functions filter shows each function as a vertical line in the sequence diagram. A function calling
itself is shown as an activity within a function, and all other function calls are shown as interactions
between functions.

The mods and procs and funcs and procs filters are equivalent to the modules and functions filters
respectively, except that each module or function can have several vertical lines, one for each process it
resides on.

As an example this module is used, and the function bar:f1() is called from another module foo.

-module(bar).
-export([f1/0,f3/0]).
f1() ->

f2(),
ok.

f2() ->
spawn(?MODULE,f3,[]).

f3() ->
ok.

The call and return to flags are used, and trace pattern is set on local calls in module bar.

ttb:format("tiger@durin-ttb", [fhandler, etg]) gives the following result:

8 Observer

1.1: Trace Tool Builder

Figure 1.1: Filter: ”processes”

9Observer

Chapter 1: Observer User’s Guide

Figure 1.2: Filter: ”mods and procs”

1.1.7 Automatically collect and format logs from all nodes

If the option fetch is given to the ttb:stop/1 function, trace logs and trace information files are
fetched from all nodes after tracing is stopped. The logs are stored in a new directory named
ttb upload-Timestamp under the working directory of the trace control node.

If the option format is given to ttb:stop/1, the trace logs are automatically formatted after tracing is
stopped. Note that format also implies fetch, i.e. the trace logs will be collected from all nodes as for
the fetch option before they are formatted. All logs in the upload directory are merged during
formatting.

1.1.8 History and Configuration Files

For the tracing functionality, dbg could be used instead of the ttb for setting trace flags on processes
and trace patterns for call trace, i.e. the functions p, tp, tpl, ctp, ctpl and ctpg. The only thing added
by ttb for these functions is that all calls are stored in the history buffer and can be recalled and stored
in a configuration file. This makes it easy to setup the same trace environment e.g. if you want to
compare two test runs. It also reduces the amount of typing when using ttb from the erlang shell.

Use list history/0 to see the content of the history buffer, and run history/1 to re-execute one of
the entries.

10 Observer

1.1: Trace Tool Builder

The main purpose of the history buffer is the possibility to create configuration files. Any function
stored in the history buffer can be written to a configuration file and used for creating a specific
configuration at any time with one single function call.

A configuration file is created or extended with write config/2/3. Configuration files are binary files
and can therefore only be read and written with functions provided by ttb.

You can write the complete content of the history buffer to a config file by calling
ttb:write config(ConfigFile,all). And you can write selected entries from the history by calling
ttb:write config(ConfigFile,NumList), where NumList is a list of integers pointing out the history
entries to write.

User defined entries can also be written to a config file by calling the function
ttb:write config(ConfigFile,ConfigList) where ConfigList is a list of
fModule,Function,Argsg.

Any existing file ConfigFile is deleted and a new file is created when write config/2 is called. The
option append can be used if you wish to add something at the end of an existing config file, e.g.
ttb:write config(ConfigFile,What,[append]).

Example: History and configuration files

See the content of the history buffer

(tiger@durin)191> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)192> ttb:p(self(),[garbage_collection,call]).
{ok,{[<0.1244.0>],[garbage_collection,call]}}
(tiger@durin)193> ttb:tp(ets,new,2,[]).
{ok,[{matched,1}]}
(tiger@durin)194> ttb:list_history().
[{1,{ttb,tracer,[tiger@durin,[]]}},
{2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
{3,{ttb,tp,[ets,new,2,[]]}}]

Execute an entry from the history buffer:

(tiger@durin)195> ttb:ctp(ets,new,2).
{ok,[{matched,1}]}
(tiger@durin)196> ttb:list_history().
[{1,{ttb,tracer,[tiger@durin,[]]}},
{2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
{3,{ttb,tp,[ets,new,2,[]]}},
{4,{ttb,ctp,[ets,new,2]}}]
(tiger@durin)197> ttb:run_history(3).
ttb:tp(ets,new,2,[]) ->
{ok,[{matched,1}]}

Write the content of the history buffer to a configuration file:

11Observer

Chapter 1: Observer User’s Guide

(tiger@durin)198> ttb:write_config("myconfig",all).
ok
(tiger@durin)199> ttb:list_config("myconfig").
[{1,{ttb,tracer,[tiger@durin,[]]}},
{2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
{3,{ttb,tp,[ets,new,2,[]]}},
{4,{ttb,ctp,[ets,new,2]}},
{5,{ttb,tp,[ets,new,2,[]]}}]

Extend an existing configuration:

(tiger@durin)200> ttb:write_config("myconfig",[{ttb,tp,[ets,delete,1,[]]}],
[append]).
ok
(tiger@durin)201> ttb:list_config("myconfig").
[{1,{ttb,tracer,[tiger@durin,[]]}},
{2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
{3,{ttb,tp,[ets,new,2,[]]}},
{4,{ttb,ctp,[ets,new,2]}},
{5,{ttb,tp,[ets,new,2,[]]}},
{6,{ttb,tp,[ets,delete,1,[]]}}]

Go back to a previous configuration after stopping Trace Tool Builder:

(tiger@durin)202> ttb:stop().
ok
(tiger@durin)203> ttb:run_config("myconfig").
ttb:tracer(tiger@durin,[]) ->
{ok,[tiger@durin]}

ttb:p(<0.1244.0>,[garbage_collection,call]) ->
{ok,{[<0.1244.0>],[garbage_collection,call]}}

ttb:tp(ets,new,2,[]) ->
{ok,[{matched,1}]}

ttb:ctp(ets,new,2) ->
{ok,[{matched,1}]}

ttb:tp(ets,new,2,[]) ->
{ok,[{matched,1}]}

ttb:tp(ets,delete,1,[]) ->
{ok,[{matched,1}]}

ok

Write selected entries from the history buffer to a configuration file:

(tiger@durin)204> ttb:list_history().
[{1,{ttb,tracer,[tiger@durin,[]]}},
{2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},

12 Observer

1.1: Trace Tool Builder

{3,{ttb,tp,[ets,new,2,[]]}},
{4,{ttb,ctp,[ets,new,2]}},
{5,{ttb,tp,[ets,new,2,[]]}},
{6,{ttb,tp,[ets,delete,1,[]]}}]
(tiger@durin)205> ttb:write_config("myconfig",[1,2,3,6]).
ok
(tiger@durin)206> ttb:list_config("myconfig").
[{1,{ttb,tracer,[tiger@durin,[]]}},
{2,{ttb,p,[<0.1244.0>,[garbage_collection,call]]}},
{3,{ttb,tp,[ets,new,2,[]]}},
{4,{ttb,tp,[ets,delete,1,[]]}}]
(tiger@durin)207>

1.1.9 Sequential Tracing

To learn what sequential tracing is and how it can be used, please turn to the reference manual for the
seq trace module in the kernel application.

The support for sequencial tracing provided by the Trace Tool Builder includes

� Initiation of the system tracer. This is automatically done when a trace port is started with
ttb:tracer/0/1/2

� Creation of match specifications which activates sequential tracing

Starting sequential tracing requires that a tracer has been started with the ttb:tracer/0/1/2 function.
Sequential tracing can then either be started via a trigger function with a match specification created
with ttb:seq trigger ms/0/1, or directly by using the seq trace module in the kernel application.

Example: Sequential tracing

In the following example, the function dbg:get tracer/0 is used as trigger for sequential tracing:

(tiger@durin)110> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)111> ttb:p(self(),call).
{ok,{[<0.158.0>],[call]}}
(tiger@durin)112> ttb:tp(dbg,get_tracer,0,ttb:seq_trigger_ms(send)).
{ok,[{matched,1},{saved,1}]}
(tiger@durin)113> dbg:get_tracer(), seq_trace:reset_trace().
true
(tiger@durin)114> ttb:stop().
ok
(tiger@durin)115> ttb:format("tiger@durin-ttb").
({<0.158.0>,{shell,evaluator,3},tiger@durin}) call dbg:get_tracer()
SeqTrace [0]: ({<0.158.0>,{shell,evaluator,3},tiger@durin})
{<0.237.0>,dbg,tiger@durin} ! {<0.158.0>,{get_tracer,tiger@durin}}
[Serial: {0,1}]
SeqTrace [0]: ({<0.237.0>,dbg,tiger@durin})
{<0.158.0>,{shell,evaluator,3},tiger@durin} ! {dbg,{ok,#Port<0.222>}}
[Serial: {1,2}]
ok
(tiger@durin)116>

13Observer

Chapter 1: Observer User’s Guide

Starting sequential tracing with a trigger is actually more useful if the trigger function is not called
directly from the shell, but rather implicitly within a larger system. When calling a function from the
shell, it is simpler to start sequential tracing directly, e.g.

(tiger@durin)116> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)117> seq_trace:set_token(send,true), dbg:get_tracer(),
seq_trace:reset_trace().
true
(tiger@durin)118> ttb:stop().
ok
(tiger@durin)119> ttb:format("tiger@durin-ttb").
SeqTrace [0]: ({<0.158.0>,{shell,evaluator,3},tiger@durin})
{<0.246.0>,dbg,tiger@durin} ! {<0.158.0>,{get_tracer,tiger@durin}}
[Serial: {0,1}]
SeqTrace [0]: ({<0.246.0>,dbg,tiger@durin})
{<0.158.0>,{shell,evaluator,3},tiger@durin} ! {dbg,{ok,#Port<0.229>}}
[Serial: {1,2}]
ok
(tiger@durin)120>

In both examples above, the seq trace:reset trace/0 resets the trace token immediately after the
traced function in order to avoid lots of trace messages due to the printouts in the erlang shell.

All functions in the seq trace module, except set system tracer/1, can be used after the trace port
has been started with ttb:tracer/0/1/2.

1.1.10 Example: Multipurpose trace tool

The module multitrace.erl which can be found in the src directory of the Observer application
implements a small tool with three possible trace settings. The trace messages are written to binary files
which can be formatted with the function multitrace:format/1/2.

multitrace:debug(What) Start calltrace on all processes and trace the given function(s). The format
handler used is multitrace:handle debug/4 which prints each call and return. What must be an
item or a list of items to trace, given on the format fModule,Function,Arityg,
fModule,Functiong or just Module.

multitrace:gc(Procs) Trace garbage collection on the given process(es). The format handler used is
multitrace:handle gc/4 which prints start and stop and the time spent for each GC.

multitrace:schedule(Procs) Trace in- and out-scheduling on the given process(es). The format
handler used is multitrace:handle schedule/4 which prints each in and out scheduling with
process, timestamp and current function. It also prints the total time each traced process was
scheduled in.

1.2 Erlang Top

1.2.1 Introduction

Erlang Top, etop is a tool for presenting information about erlang processes similar to the information
presented by top in UNIX.

14 Observer

1.2: Erlang Top

1.2.2 Output

The output from etop can be graphical or text based.

Text based it looks like this:

==
tiger@durin 13:40:32
Load: cpu 0 Memory: total 1997 binary 33

procs 197 processes 0 code 173
runq 135 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.23.0> code_server 0 59585 78064 0 gen_server:loop/6
<127.21.0> file_server_2 0 36380 44276 0 gen_server:loop/6
<127.2.0> erl_prim_loader 0 27962 3740 0 erl_prim_loader:loop
<127.9.0> kernel_sup 0 6998 4676 0 gen_server:loop/6
<127.17.0> net_kernel 62 6018 3136 0 gen_server:loop/6
<127.0.0> init 0 4156 4352 0 init:loop/1
<127.16.0> auth 0 1765 1264 0 gen_server:loop/6
<127.18.0> inet_tcp_dist:accept 0 660 1416 0 prim_inet:accept0/2
<127.5.0> application_controll 0 569 6756 0 gen_server:loop/6
<127.137.0> net_kernel:do_spawn_ 0 553 5840 0 dbg:do_relay_1/1
==

And graphically it looks like this:

Figure 1.3: Graphical presentation of etop

15Observer

Chapter 1: Observer User’s Guide

The header includes some system information:

Load cpu is Runtime/Wallclock, i.e. the percentage of time where the node has been active, procs is
the number of processes on the node, and runq is the number of processes that are ready to run.

Memory This is the memory allocated by the node in kilo bytes.

For each process the following information is presented:

Time This is the runtime for the process, i.e. the actual time the process has been scheduled in.

Reds This is the number of reductions that has been executed on the process

Memory This is the size of the process in bytes, obtained by a call to process info(Pid,memory).

MsgQ This is the length of the message queue for the process.

Note:
Time and Reds can be presented as accumulated values or as values since last update.

1.2.3 Start

To start etop with the graphical presentation, use the script getop or the batch file getop.bat, e.g.
getop -node tiger@durin

To start etop with the text based presentation use the script etop or the batch file etop.bat, e.g. etop
-node tiger@durin,

1.2.4 Configuration

All configuration parameters can be set at start by adding -OptName Value to the command line, e.g.
etop -node tiger@durin -setcookie mycookie -lines 15.

The parameters lines, interval, accumulate and sort can be changed during runtime. Use the
Options menu with the graphical presentation or the function etop:config/2 with the text based
presentation.

A list of all valid configuration parameters can be found in the reference manual for etop.

Note that it is even possible to change which information to sort by by clicking the header line of the
table in the graphical presentation.

16 Observer

1.2: Erlang Top

Example: Change configuration with graphical presentation

Figure 1.4: Select the option to change from the Options menu.

17Observer

Chapter 1: Observer User’s Guide

Figure 1.5: Enter the new value in the popup window and click ”Ok”

Figure 1.6: The interface is updated with the new configuration

Example: Change configuration with text based presentation

==
tiger@durin 10:12:39
Load: cpu 0 Memory: total 1858 binary 33

18 Observer

1.2: Erlang Top

procs 191 processes 0 code 173
runq 2 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.23.0> code_server 0 60350 71176 0 gen_server:loop/6
<127.21.0> file_server_2 0 36380 44276 0 gen_server:loop/6
<127.2.0> erl_prim_loader 0 27962 3740 0 erl_prim_loader:loop
<127.17.0> net_kernel 0 13808 3916 0 gen_server:loop/6
<127.9.0> kernel_sup 0 6998 4676 0 gen_server:loop/6
<127.0.0> init 0 4156 4352 0 init:loop/1
<127.18.0> inet_tcp_dist:accept 0 2196 1416 0 prim_inet:accept0/2
<127.16.0> auth 0 1893 1264 0 gen_server:loop/6
<127.43.0> ddll_server 0 582 3744 0 gen_server:loop/6
<127.5.0> application_controll 0 569 6756 0 gen_server:loop/6
==

etop:config(lines,5).
ok

(etop@durin)2>
==
tiger@durin 10:12:44
Load: cpu 0 Memory: total 1859 binary 33

procs 192 processes 0 code 173
runq 2 atom 1002 ets 95

Pid Name or Initial Func Time Reds Memory MsgQ Current Function
--
<127.17.0> net_kernel 183 70 4092 0 gen_server:loop/6
<127.335.0> inet_tcp_dist:do_acc 141 22 1856 0 dist_util:con_loop/9
<127.19.0> net_kernel:ticker/2 155 6 1244 0 net_kernel:ticker1/2
<127.341.0> net_kernel:do_spawn_ 0 0 5840 0 dbg:do_relay_1/1
<127.43.0> ddll_server 0 0 3744 0 gen_server:loop/6
==

1.2.5 Print to file

At any time, the current etop display can be dumped to a text file. Use Dump to file on the File menu
with the grapical presentation or the function etop:dump/1 with the text based presentation.

1.2.6 Stop

To stop etop, use Exit on the File menu for the graphical presentation, or the function etop:stop/0
with the text based presentation.

19Observer

Chapter 1: Observer User’s Guide

20 Observer

OBSERVER Reference Manual

Short Summaries

� Application observer [page 23] – The Observer Application

� Erlang Module etop [page 24] – Erlang Top is a tool for presenting information
about erlang processes similar to the information presented by ”top” in UNIX.

� Erlang Module ttb [page 26] – A base for building trace tools for distributed
systems.

observer

No functions are exported.

etop

The following functions are exported:

� config(Key,Value) -> Result
[page 25] Change tool’s configuration

� dump(File) -> Result
[page 25] Dump the current display to a file.

� stop() -> stop
[page 25] Terminate etop

ttb

The following functions are exported:

� tracer() -> Result
[page 26] This is equivalent to tracer(node()).

� tracer(Nodes) -> Result
[page 26] This is equivalent to tracer(Nodes,[]).

� tracer(Nodes,Opts) -> Result
[page 26] Start a trace port on each given node.

� p(Procs,Flags) -> Return
[page 27] Sets the given trace flags on the given processes.

� tp, tpl, ctp, ctpl, ctpg
[page 27] Set and clear trace patterns.

21Observer

OBSERVER Reference Manual

� list history() -> History
[page 27] Returns all calls stored in history

� run history(N) -> ok | ferror, Reasong
[page 27] Executes one entry of the history

� write config(ConfigFile,Config)
[page 28] Equivalent to write config(ConfigFile,Config,[]).

� write config(ConfigFile,Config,Opt) -> ok | ferror,Reasong
[page 28] Creates a config file.

� run config(ConfigFile) -> ok | ferror,Reasong
[page 28] Executes all entries in a config file.

� run config(ConfigFile,NumList) -> ok | ferror,Reasong
[page 28] Executes selected entries from a config file.

� list config(ConfigFile) -> Config | ferror,Reasong
[page 28] Lists all entries in a config file.

� write trace info(Key,Info) -> ok
[page 29] Writes any information to the .ti file.

� seq trigger ms() -> MatchSpec
[page 29] Equivalent to seq trigger ms(all)

� seq trigger ms(Flags) -> MatchSpec
[page 29] Returns a match spec() which starts sequential tracing

� stop()
[page 30] Equivalent to stop([])

� stop(Opts) -> stopped
[page 30] Stop tracing and fetch/format logs from all nodes

� format(File)
[page 30] Same as format(File,[]).

� format(File,Options) -> ok | ferror, Reasong
[page 30] Format a binary trace log

22 Observer

OBSERVER Reference Manual observer

observer
Application

This chapter describes the OBSERVER application in OTP, which provides tools for
tracing and investigation of distributed systems.

Configuration

There are currently no configuration parameters available for this application.

SEE ALSO

23Observer

etop OBSERVER Reference Manual

etop
Erlang Module

etop should be started with the provided scripts etop and getop for text based and
graphical presentation respectively. Under Windows the batch files etop.bat and
getop.bat can be used.

All interaction with etop when running the graphical presentation should happen via
the menus. For the text based presentation the functions described below can be used.

The following configuration parameters exist for etop.

node The measured node.
Value: atom()
Mandatory

setcookie Cookie to use for the etop node - must be the same as the cookie on the
measured node.
Value: atom()

lines Number of lines (processes) to display.
Value: integer()
Default: 10

interval The time interval (in seconds) between each update of the display.
Value: integer()
Default: 5

accumulate If true the execution time and reductions are accumulated.
Value: boolean()
Default: false

sort Identifies what information to sort by.
Value: runtime | reductions | memory | msg q
Default: runtime (reductions if tracing=off)

tracing etop uses the erlang trace facility, and thus no other tracing is possible on the
measured node while etop is running, unless this option is set to off. Also helpful
if the etop tracing causes too high load on the measured node. With tracing off,
runtime is not measured.
Value: on | off
Default: on

24 Observer

OBSERVER Reference Manual etop

Exports

config(Key,Value) -> Result

Types:

� Result = ok | ferror,Reasong
� Key = lines | interval | accumulate | sort
� Value = term()

This function is used to change the tool’s configuration parameters during runtime. The
table above indicates the allowed values for each parameter.

dump(File) -> Result

Types:

� Result = ok | ferror,Reasong
� File = string()

This function dumps the current display to a text file.

stop() -> stop

This function terminates etop.

25Observer

ttb OBSERVER Reference Manual

ttb
Erlang Module

The Trace Tool Builder ttb is a base for building trace tools for distributed systems.

When using ttb, dbg shall not be used in parallel.

Exports

tracer() -> Result

This is equivalent to tracer(node()).

tracer(Nodes) -> Result

This is equivalent to tracer(Nodes,[]).

tracer(Nodes,Opts) -> Result

Types:

� Result = fok, ActivatedNodesg | ferror,Reasong
� Nodes = atom() | [atom()] | all | existing | new
� Opts = [Opt]
� Opt = ffile,Clientg | fhandler, FormatHandlerg | fprocess info,PIg
� Client = File | flocal, Fileg
� File = Filename | Wrap
� Filename = string()
� Wrap = fwrap,Filenameg | fwrap,Filename,Size,Countg
� FormatHandler = See format/2
� PI = true | false

This function starts a file trace port on all given nodes and also points the system tracer
for sequential tracing to the same port.

The given Filename will be prefixed with the node name. Default Filename is “ttb”.

File=fwrap,Filename,Size,Countg can be used if the size of the trace logs must be
limited. Default values are Size=128*1024 and Count=8.

When tracing diskless nodes, ttb must be started from an external “trace control node”
with disk access, and Client must be flocal, Fileg. All trace information is then sent
to the trace control node where it is written to file.

The process info option indicates if process information should be collected. If PI =
true (which is default), each process identifier Pid is replaced by a tuple
fPid,ProcessInfo,Nodeg, where ProcessInfo is the process’ registered name its

26 Observer

OBSERVER Reference Manual ttb

globally registered name, or its initial function. It is possible to turn off this
functionality by setting PI = false.

p(Procs,Flags) -> Return

Types:

� Return = fok,[fProcs,MatchDescg]g
� Procs = Process | [Process] | all | new | existing
� Process = pid() | atom() | fglobal,atom()g
� Flags = Flag | [Flag]

This function sets the given trace flags on the given processes.

Please turn to the Reference manual for module dbg for details about the possible trace
flags. The parameter MatchDesc is the same as returned from dbg:p/2

Processes can be given as registered names, globally registered names or process
identifiers. If a registered name is given, the flags are set on processes with this name on
all active nodes.

tp, tpl, ctp, ctpl, ctpg

These functions should be used in combination with the call trace flag for setting and
clearing trace patterns. When the call trace flag is set on a process, function calls will
be traced on that process if a trace pattern has been set for the called function. Trace
patterns specifies how to trace a function by using match specifications. Match
specifications are described in the User’s Guide for the erlang runtime system erts.

These functions are equivalent to the corresponding functions in dbg, but all calls are
stored in the history. The history buffer makes it easy to create config files so that the
same trace environment can be setup several times, e.g. if you want to compare two test
runs. It also reduces the amount of typing when using ttb from the erlang shell.

tp Set trace pattern on global function calls

tpl Set trace pattern on local and global function calls

ctp Clear trace pattern on local and global function calls

ctpl Clear trace pattern on local function calls

ctpg Clear trace pattern on global function calls

list history() -> History

Types:

� History = [fN,Func,Argsg]

All calls to ttb is stored in the history. This function returns the current content of the
history. Any entry can be re-executed with run history/1 or stored in a config file with
write config/2/3.

run history(N) -> ok | ferror, Reasong

Types:

� N = integer() | [integer()]

27Observer

ttb OBSERVER Reference Manual

Executes the given entry or entries from the history list. History can be listed with
list history/0.

write config(ConfigFile,Config)

Equivalent to write config(ConfigFile,Config,[]).

write config(ConfigFile,Config,Opt) -> ok | ferror,Reasong

Types:

� ConfigFile = string()
� Config = all | [integer()] | [fMod,Func,Argsg]
� Mod = atom()
� Func = atom()
� Args = [term()]
� Opt = [] | [append]

This function creates or extends a config file which can be used for restoring a specific
configuration later.

The content of the config file can either be fetched from the history or given directly as
a list of fMod,Func,Argsg.

If the complete history is to be stored in the config file Config should be all. If only a
selected number of entries from the history should be stored, Config should be a list of
integers pointing out the entries to be stored.

If Opt is not given or if it is [], ConfigFile is deleted and a new file is created. If Opt =
[append], ConfigFile will not be deleted. The new information will be appended at
the end of the file.

run config(ConfigFile) -> ok | ferror,Reasong

Types:

� ConfigFile = string()

Executes all entries in the given config file.

run config(ConfigFile,NumList) -> ok | ferror,Reasong

Types:

� ConfigFile = string()
� NumList = [integer()]

Executes selected entries from the given config file. NumList is a list of integers pointing
out the entries to be executed.

The content of a config file can be listed with list config/1.

list config(ConfigFile) -> Config | ferror,Reasong

Types:

� ConfigFile = string()
� Config = [fN,Func,Argsg]

Lists all entries in the given config file.

28 Observer

OBSERVER Reference Manual ttb

write trace info(Key,Info) -> ok

Types:

� Key = term()
� Info = Data | fun() -> Data
� Data = term()

The .ti file contains fKey,ValueListg tuples. This function adds Data to the
ValueList associated with Key. All information written with this function will be
included in the call to the format handler.

seq trigger ms() -> MatchSpec

Equivalent to seq trigger ms(all)

seq trigger ms(Flags) -> MatchSpec

Types:

� MatchSpec = match spec()
� Flags = all | SeqTraceFlag | [SeqTraceFlag]
� SeqTraceFlag = atom()

A match specification can turn on or off sequential tracing. This function returns a
match specification which turns on sequential tracing with the given Flags.

This match specification can be given as the last argument to tp or tpl. The activated
Item will then become a trigger for sequential tracing. This means that if the item is
called on a process with the call trace flag set, the process will be “contaminated” with
the seq trace token.

If Flags = all, all possible flags are set.

Please turn to the reference manual for the seq trace module in the kernel application
to see the possible values for SeqTraceFlag. For a description of the match spec()
syntax, please turn to the User’s guide for the runtime system (erts). The chapter Match
Specification in Erlang explains the general match specification “language”.

Note:
The system tracer for sequential tracing is automatically initiated by ttb when a trace
port is started with ttb:tracer/0/1/2.

Example of how to use the seq trigger ms/0/1 function:

(tiger@durin)5> ttb:tracer().
{ok,[tiger@durin]}
(tiger@durin)6> ttb:p(all,call).
{ok,{[all],[call]}}
(tiger@durin)7> ttb:tp(mod,func,ttb:seq_trigger_ms()).
{ok,[{matched,1},{saved,1}]}
(tiger@durin)8>

Whenever mod:func(...) is called after this, the seq trace token will be set on the
executing process.

29Observer

ttb OBSERVER Reference Manual

stop()

Equivalent to stop([]).

stop(Opts) -> stopped

Types:

� Opts = [Opt]
� Opt = fetch | format

Stops tracing on all nodes.

The fetch option indicates that trace logs shall be collected from all nodes after tracing
is stopped. This option is useful if nodes on remote machines are traced. Logs and trace
information files are then sent to the trace control node and stored in a directory named
ttb upload-Timestamp, where Timestamp is on the form yyyymmdd-hhmmss. Even logs
from nodes on the same machine as the trace control node are moved to this directory.

The format option indicates that the trace logs shall be formatted after tracing is
stopped. Note that this option also implies the fetch option, i.e. logs are collected in a
new directory on the trace control node before formatting. All logs in the directory will
be merged.

format(File)

Same as format(File,[]).

format(File,Options) -> ok | ferror, Reasong

Types:

� File = string() | [string()]
This can be the name of a binary log, a list of such logs or the name of a directory
containing one or more binary logs.

� Options = [Opt]
� Opt = fout,Outg | fhandler,FormatHandlerg
� Out = standard io | string()
� FormatHandler = fFunction, InitialStateg | et
� Function = fun(Fd,Trace,TraceInfo,State) -> State
� Fd = standard io | FileDescriptor

This is the file descriptor of the destination file Out

� Trace = tuple()
This is the trace message. Please turn to the Reference manual for the erlang
module for details.

� TraceInfo = [fKey,ValueListg]
This includes the keys flags, client and node, and if handler is given as option to
the tracer function, this is also included. In addition all information written with the
write trace info/2 function is included.

30 Observer

OBSERVER Reference Manual ttb

Reads the given binary trace log(s). If a directory or a list of logs is given and the
timestamp flag was set during tracing, the trace messages from the different logs are
merged according to the timestamps.

If FormatHandler = fFunction,InitialStateg, Function will be called for each
trace message. If FormatHandler = et, et viewer in the Event Tracer application (et)
is used for presenting the trace log graphically. ttb provides a few different filters which
can be selected from the Filter menu in the et viewer. If FormatHandler is not given, a
default handler is used which presents each trace message as a line of text.

If Out is given, FormatHandler gets the filedescriptor to Out as the first parameter.

Out is ignored if FormatHandler = et.

Wrap logs can be formatted one by one or all in one go. To format one of the wrap logs
in a set, give the exact name of the file. To format the whole set of wrap logs, give the
name with ’*’ instead of the wrap count. See examples in the ttb User’s Guide.

31Observer

ttb OBSERVER Reference Manual

32 Observer

List of Figures

1.1 Filter: ”processes” . 9

1.2 Filter: ”mods and procs” . 10

1.3 Graphical presentation of etop . 15

1.4 Select the option to change from the Options menu. 17

1.5 Enter the new value in the popup window and click ”Ok” 18

1.6 The interface is updated with the new configuration . 18

33Observer

List of Figures

34 Observer

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

config/2
etop , 25

dump/1
etop , 25

etop
config/2, 25
dump/1, 25
stop/0, 25

format/1
ttb , 30

format/2
ttb , 30

list_config/1
ttb , 28

list_history/0
ttb , 27

p/2
ttb , 27

run_config/1
ttb , 28

run_config/2
ttb , 28

run_history/1
ttb , 27

seq_trigger_ms/0
ttb , 29

seq_trigger_ms/1
ttb , 29

stop/0

etop , 25
ttb , 30

stop/1
ttb , 30

tp, tpl, ctp, ctpl, ctpg
ttb , 27

tracer/0
ttb , 26

tracer/1
ttb , 26

tracer/2
ttb , 26

ttb
format/1, 30
format/2, 30
list_config/1, 28
list_history/0, 27
p/2, 27
run_config/1, 28
run_config/2, 28
run_history/1, 27
seq_trigger_ms/0, 29
seq_trigger_ms/1, 29
stop/0, 30
stop/1, 30
tp, tpl, ctp, ctpl, ctpg, 27
tracer/0, 26
tracer/1, 26
tracer/2, 26
write_config/2, 28
write_config/3, 28
write_trace_info/2, 29

write_config/2
ttb , 28

write_config/3
ttb , 28

35Observer

Index of Modules and Functions

write_trace_info/2
ttb , 29

36 Observer

